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Asymptotic solutions are obtained for the equations of a dynamically similar 
boundary layer in the case of natural convection on a vertical nonisothermal plate 
with vigorous blowing. 

Asymptotic solutions were obtained in [i, 2] for the equations of motion to describe 
forced convection in intensive blowing over an isothermal surface. It was established in 
these works that an inviscid vortical boundary layer with a constant temperature T w is formed 
close to the surface. Velocity and temperature vary up to their values in the environment 
within a relatively narrow, viscous region adjacent to an inviscid layer. A boundary flow 
of similar structure was seen on a vertical plate with vigorous blowing in [3]. Presented 
below are asymptotic solutions of equations of a dynamically similar boundary layer with an 
exponential distribution of wall temperature T w -- T~ ~ x n (n ~ 0). 

With a change in injection rate according to the law V w ~ X (n-I)/4 , the system of 

boundary-layer equations describing free convection on a vertical plate reduces to the or- 
dinary differential equations [4]: 

F ' "  + (n + 3) FF" - - ( 2 n  + 2) F '~ + 0 =: 0, (1)  

0" + Pr [(n + 3) F0' - -  4nF'O] : 0 (2)  

with the boundary conditions 

- - 0  F = - - ~ ,  F ' - - 0 ,  O =  1; ~ =  ~ F ' = O : 0 .  (3)  

To construct the solution in the boundary region of the flow, we change over to the 
variables ~ = n/~ and f = F/~ in (1)-(3): 

__1 f" '  + (n + 3) f f " - - ( i n - v  i )  ,-r 
(Z 2 

(4) 

1 
ft' q- Pr [(n -4- 3) fO' - -  4,~/'0] = 0, 

GR 5) 

~ = 0  f = - - 1 ,  f ' = o ,  0 = 1 ;  ~=~o f ' = o = o .  (6) 

In the case of high values of the injection parameter ~, the solution of Lhe problem 
(4)-(6) can be represented in the form of the series 

[: S f~(~---~)~ik , 8__ S Oh(~)~z 2k , (7)  
h:O k : O  

where the functions fk and O k are found from the chain of equations 

k = o (n + S)/ofo - -  t in "- 2)/d" + eo = O, (8) 

(n + 3) Leo --4:7f~ Oo = o, (9) 

h h 

k >~ ~ (,, + 3) (..~ f,,_, f;t, - (2 ,~  + 2)(~,.. f; f,~_,) + e,, = - t'f',: (10) 
i = O  ~ O  
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Fig. l. Distribution of velocity f' and temperature 
8: a) 1-5) n = 0, 0.5, 1.0, 3.0, i0.0; b) 1-5) n = 0, 
0.008, 0.125, 1.0, i0.0 
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Fig. 2. Effect of parameter n on 

f~ax (i), ~, (2), and ~max (3). 

k k 
g ' 

Pr[(n + 3)'~('? ,i0k_~ ) --4:~ ( ~  ];Gh_i)] = - -0 ;_1  
i--O i=O 

(ii) 

with the boundary conditions 

~=0 f o = - l ,  A = o ,  o o = l ;  (12) 

= o [ ~ = f ~ =  0h=0 (13) 

The order of Eqs. (8)-(11) is one less than the order of the initial equations. Thus, 
the values of f~(0) and O~(0) for any k ) 0 and, hence, friction and heat flux on the wail, 
similar to the problem of forced convection with vigorous injection [5, 6], can be found by 
solving system (8)-(ii) with boundary conditions (12) and (13) without allowing for the con- 
ditions on the outer boundary of the boundary layer: 

F"(0) - -  1 , I_L - [ 1 4(2 ;~+ 1) 
~. (lz + 3) ~- ~ (~ + 3p (,~z + 3) ~ 

]+0 
Pr (n -[- 3) 5 _ 

o' (0) - ~ P r ( n + 3 )  ~ 0 I\ & ) 

The integral of Eq. (9) has the form 
4n 

00 ----Ill 'z-~ (14) 

Then calculation of the velocity and temperature distributions in the zeroth approximation 
with respect to the small parameter i/~ 2 reduces to the solution of Eq. (8) with allowance 
for (14). Figure i shows graphs of the functions fo(~) and 6o(~). The thickness of the 
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inviscid layer ~, is determined from the condition f(~,) = 0. It can be seen from Fig. ] 
that an increase in the parameter n is accompanied by erosion of the boundary, which is dis- 

tinctly present with an isothermal wall and which separates the injected moving gas with the 

temperature T w from the quiescent medium with the temperature T~. At n = i, the distribution 

of longitudinal velocity is symmetrical relative to the maximum and has the form 

/ '=  --7-. -~in {-Z--~)"  

Figure 2 shows the dependence of the maximum value of the velocity profile fmax, the 

thickness of the inviscid layer ~,, and the coordinate of the maximum velocity ~max on the 
parameter n. The velocity maximum decreases with an increase in n, while the thickness of 

the boundary layer increases. The minimum of ~max corresponds to n = i. 

At n = 0, in contrast to n > 0, heat flux to the wall cannot be determined from the ex-. 
pansion (7), since 9'(0) = O(i/a 2k) at all k. Instead, the heat flux should be found di- 
rectly from the solution of Eq. (2) 

~'~ = 1 --- I ~.xp k - - 3 P "  i' ~d]].>*' ' / ] ] ] /  i I ex~ ( -3~7[" / I' FL!'t].) (i')'~,. 
[': 0 " I t: {' 

from which 

0 ' ( t ) = - - i / i  exp [ - - 3 P r  ~ Fchl_,! dh:,  (15) 

In the case of vigorous blowing, the asymptotic value of the integral in Eq. (15) can 
be determined 

From Eq. (8) we have 

b o o { 

l i e x p f - -  3Pr ~,~ i' ; t ' ' _  , 

- : /  2: , ~  ] ",, 
x j ' " + - - - ~ .  

, J /  ~ r  3 P r l  / 

.rj~. I 2 ~" / d /  _ 3 B ~  _ . 
i . . . . . . . . .  i\ ; ' i '  t t_9  2 5 , 

(t6) 

(17) 

l 

where B(x; {I) - ! l ~-i (i--/)u-I 6t is the beta function. 

h 

The value of f = F(n + ~) is determined from the problem of asymptotic growth of the 
inviscid boundary solution with the boundary conditions away from the plate examined in [I]: 

F " ' q - S F " f -  2F '~d  0 : 0 ,  

O" § 3PFF0'  = 0, (18) 

where qz = n q,. 

Allowing for Eqs. (16) and (17), the expression for heat flux on an isothermal vertical 
plate with vigorous injection takes the form 
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DISCHARGE OF A TURBULENT JET IN A MONODISPERSE FLUIDIZED BED 

N. N. Prokhorenko and Yu. I. Chernyaev UDC 532.546 

The velocity of initial circulation is calculated and explanations are given for 
the mechanism of jet collapse and the existence of bubble and jet regimes. 

Apparatus with fluidized beds of granular materials are widely used in industry, thanks 

to the high rate at which transport processes take place within them. In several processes, 
such as the granulation of solutions and melts in fluidized-bed apparatus, a turbulent jet 
inside the fluidized bed is used. A great many experimental studies have now been done on 
the development of the jet. These investigations are adequately detailed in [i]. Among the 
numerous effects seen in the interaction of the jet with the fluidized bed, the authors fo- 
cused on the following: A dome-shaped gas jet is formed when a stream is discharged into a 
fluidized bed; when the ratio of the height of the jet to the height of the bed xf/H < 0.6, 
the discharge takes place in the so-called "bubble" regime, accompanied by periodic collapse 
of the jet with the formation of bubbles; when the ratio xf/H > 0.6, discharge occurs in the 
"jet" regime, with the boundaries of the jet being stationary and collapse of the jet oc- 
curring with greater frequency at the very edge of the nozzle. This can be seen quite clearly 
with the aid of high-speed photography. 

We attempted to explain the physical mechanism of collapse of the gas jet and obtain 
quantitative relations establishing the conditions of this phenomenon. 

The discharge of a stream into a bed of granular material was studied theoretically in 
[i, 2] and other works, and reliable results were obtained for the case of stationary beds. 
However, no explanation was found for the formation of the gas bubbles. It was only shown 
in [2] that "excessive constriction" of the stream, with the formation of bubbles, occurs at 
that area of the jet where the radial velocity component of the gas changes sign. 

Below we present a method of analyzing the above phenomenon on the basis of a qualitative 
theory of differential equations describing the motion of particles of a granular material in 
a turbulent jet. 

We will examine a circular, vertical, axisymmetric stream injected into a fluidized bed 
of particles of a narrow size fraction. For the sake of specificity in subsequent discus- 
sions, we will consider the boundaries of the gas jet (or the boundaries of the zone of dis- 
charge of the stream) to be the surface formed by the closest points to the stream axis at 
which the velocity of the gas is equal to the free-fall velocity of the particles at the cor- 
responding porosity. We will also assume that the porosity and, thus the free-fall velocity 

All-Union Scientific-Research and Planning-Design Institute for Assembly and Processing 
Lines, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 43, No. 6, pp. 913-918, 
December, 1982. Original article submitted November 23, 1981. 

1334 0022-0841/82/4306-1334507.50 �9 ]_983 Plenum Publishing Corporation 


